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Introduction
The task of wastewater treatment is to clean the contaminated 

waters which are discharged into the environment after treatment. 
The surface waters must reach a good ecological status according 
to the Water Framework Directive. It is important not to load the 
recipients with contminating materials and nutrients which are 
heavily decomposable. The goal of the sewage treatment is to lower 
the anthropogenic effects in the hydrological system to the lowest 
possible level. Thus, the task is typically to reduce the concentration 
of nutrients, to remove the dissolved oxygen consuming substances 
and to remove the accumulated organic and inorganic substances 
from wastewater [1,2].

It is clear that in the 21th centur the protection of human health, 
the implementation of the concept of sustainable development 
and the protection of the ecosystem continue to play an important 
role. In many articles [3,4] it is emphasized that urbanization is 
increasing and the associated wastewater treatment poses a huge 
burden on the environment [5]. Among the readers of the new 
scientific results there are only few who have learnt from their 
own experience the social, economic and environmental problems 
of water scarcity. However, in many regions Table 1, there are  

 
millions of people who lack the water supply or the comfort of the  
public sewage system. With the introduction of the third stage of 
the sewage treatment, numerous problems have been resolved. 
However, there are still many issues that need to be solved. These 
questions raise the following tasks: the removal of anthropogenic 
micropollutants,which are often persistent. The WFD guidelines 
stipulate, the achievement and maintenance of good ecological 
status, wherever is possible, and the healthy drinking water supply. 
To solve these problems, many laboratories, research institutions 
and industrial companies deal with the performance and 
effectiveness of wastewater treatment technologies (Table 1), [6].

Table 1: Number and proportion of urban dwellers lacking adequate 

water supply and sewerage (2000) [4].

Region Number of people without 
enough water

Number of people 
without public sewer

Africa 100-150 million people 
(35-50%)

150-180 million people 
(50-60%)

Asia 500-700 million people 
(35-50%)

600-800 million people 
(45-60%)

Latin America 
and its region

80-120 million people (20-
30%)

100-150 million people 
(25-40%)
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Abstract 
In recent years, the micropollutants are increasingly detectable in the aquatic environment and endanger the human health even on short-

term. The impacts of pharmaceuticals and personal hygiene care products and chemicals in the aquatic environment is not clearly understood yet. 
The drug residues, household chemicals and pesticides are micropolluting components in our waters. The paper deals with different fourth stage 
wastewater treatment technologies including the advanced oxidation processes for the removal of micropollutants. The micropollutant removal 
efficiencies are studied and compared in light of the different technological solutions.
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Micropollutants
Micropollutants are those substances that can be found in 

waters in magnitude of μg/l and reduce or eliminate the conditions 
of life processes in natural living waters. In this way the usability 
of waters as potable waters is drastically reduced or eliminated. 
Most of these micropollutants entering into living waters have 
persistent properties. One part of these contaminating materials 
can be removed in municipal sewage treatment plants, however 
significant part of these cannot be eliminated in the conventional 
wastewater facilities [A26]. These micropollutants can be organic 
micropollutants, inorganic micropollutants, drugs and drug 
residues, medicines, pesticides, etc. [7]. Therefore a fourth-stage 
treatment line is necessary to be considered in the wastewater 
treatment. In recent years, these micropollutants are increasingly 
detectable in the aquatic environment, as reported in the literature 
[8]. Christian and Thomas’ work is a good summary of the effects of 
pharmaceuticals and personal hygiene care products and chemicals 
in the aquatic environment. Their work suggests that drug residues, 
household chemicals and pesticides significantly pollute the surface 
waters. The source of these pollutants can be effluents, untreated 
waters, drain offs and flood streams [9]. Conventional sewage 
treatment plants receive a wide spectrum of such pollutants, 
which cannot be completely removed by conventional treatment 
procedures, so these materials accumulate in the recipients, as 
described by Yoon et al. [10].

The concentration of these pollutants is increasing, and today 
they are increasingly detectable in surface waters. These impurities 
typically exhibit significant toxicity even at low concentrations. 
Pollutants with hydrophilic properties also pose a threat to species 
of aquatic ecosystems [9]. In many cities, it can be observed that the 
water resources are contaminated in certain extent with effluents, 
so micropollutants entered into the drinking water bases. Thania 
and his colleagues dealt with Mexico City’s drinking water base and 
they identified 17 organic micropollutants whose concentrations 
were over the limit values, and it was proven that those derived from 
anthropogenic sources [11]. Yunlong Luo et al. in their 2014 article 
concluded that the novel tasks of wastewater treatment include 
maximizing the efficiency of the micropollutant removal during the 
optimization of sewage treatment plants. Some pollutants cannot be 
removed at all, others can only be party removed in the traditional 
wastewater treatment plants. It is mentioned that highly efficient 
methods, like advanced oxidation processes (AOP), adsorption 
processes and membrane separation procedures are all suitable 
for micropollutant removal, but these additional technological 
steps significantly increase the operating costs of the treatment 
facilities [7]. According to Maria Gavrilescu et al., these pollutants 
exhibit a serious challenge for the environment and human health 
in the future. They also pointed out that the operational treatment 
technologies cannot handle the new challenges [12].

Pesticides
Pesticides are mixtures of substances to protect plants and thus 

increase the agricultural productivity. Pesticides are vital elements 

of the modern agriculture, they play a significant role in high-
quality production. However, the long-term use of pesticides could 
exhibit a negative impact on the environment and human health 
[13]. A significant part of these adverse effects is due to the fact 
that they are being dispensed in inappropriate doses to agricultural 
areas or that inappropriate pesticides are used [14]. Mustapha and 
his associates also revealed a significant fact that in many countries 
banned pesticides are used [15]. The presence of these components 
in the environment is a potential source of danger [16].

Pharmaceutical Residues
The presence of pharmaceutical residues and hormones in 

sewage and surface water has been confirmed in several articles 
[17]. As the population increases, the use of medicines increases 
proportionally. In this way the presence of environmentally-
unfriendly substances significantly increases in the environment 
[18]. Consequently, wastewater treatment plants will be heavily 
burdened with pharmaceutical residues. In the effluent of 
conventional sewage treatment plants, the concentration of drug 
substances also increases, which also accumulates in surface 
waters and accumulates due to their high biological stability [19]. 
The most frequently detected drug substances in wastewater are 
the following according to Bush’s work [20]: 

Inflammatory and analgesic agents: paracetamol, acetylsalicylic 
acid, ibuprofen, diclofenac,

Antidepressants: benzodiazepines,

Antiepileptics: carbamazepine,

Lipid-lowering drugs: fibrates

β-blockers: atenolol, propanolol, metoprolol

Antibacterial drugs: antihistamines (ranitidine, famotidine)

Antibiotics: tetracyclines, macrolides, β-lactams, penicillins, 
quinolones, sulfonamides, fluoroquinolones, chloramphenicol, 
imidazole derivatives

Other substances: cocaine, barbiturates, methadone, 
amphetamines, opiates, heroin and other narcotics [20].

These compounds and their metabolites burden the sewage 
treatment plants. If the sewage treatment plants cannot remove 
the pollutants, the pollutants enter into the recipients, i.e. into the 
surface waters. The presence of these substances has a negative 
impact on the quality of the effluents. Therefore, continuous and 
targeted monitoring programs can positively contribute to solve this 
problem, however, additional mitigation measures are necessary.

Processes for the Removal of Micropollutants
Most of the micropollutants are not biologically decomposable 

or are very difficult to be broken down in the biological wastewater 
treatment units. For this reason, the micropollutants appear in the 
recipients unchanged [6]. There are a number of novel technological 
solutions for the removal of the micropollutants, and a brief 
summary on these will be given in this paper. Depending on the 
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properties of the micropollutants, the coagulation and flocculation 
processes can be used to remove some or all of these compounds. 
From the work of Wray and Andrews, membrane separation 
processes are not always suitable to withhold the various organic 
micropollutants with good operational safety. The membrane 
separation technique can be efficiently combined with coagulation 
pretreatment [21]. Also due to the chemical and physical properties 
of the micropollutants those can accumulate in the the wastewater 
sludge. They are bound to the sludge matrix by chemical or physical 
adsorption. It is mentioned that during the biological processes the 
efficiency of the removal is influenced not only by the degradation 
but also by the sorption processes [22]. The procedures already 
referred to as fourth stage wastewater treatment are currently 
installed into the wastewater treatment train, however, these 
processes have not yet been widely applied in many countries. 

These proedures are used e.g. in Germany, Switzerland. Stefanos et 
al., discloses five different oxidation processes and three different 
post-treatment processes for Swiss treatment plants [23]. 

Micropollutants in Sewage Treatment Plants
The biological sewage treatments with present technologies 

are not suitable for removing the micropollutants efficiently. 
Micropollutants are specific for treatment, and there is no uniform 
process for their removal due to their different properties as 
described by Yunlong Luo et al. [7]. A number of articles and reports 
have been published in this area [24-33], Figure 1. summarizes 
the relative frequencies of the various AOP techniques used in the 
European Union between 2004 and 2014. The assessment took into 
account the groups of substances stipulated in Directive 2013/39 / 
EU [34], (Figure 1).

Figure 1 : Relative frequency of different AOP procedures in EU [34].

Several papers have been published over the last decades on the 
effectiveness of high efficiency oxidation processes for the removal 
of micropollutants. Giannakis et al. studied five different oxidation 
methods for micropollutant removal. The procedures studied 
were as follows: UV-C, UV-C/H2O2, Solar, Fenton, photo-Fenton 
procedures. It was found that the UV-C is the most efficient when 
the pretreated sewage was treated with MBBR (Moving Bed Biofilm 
Reactor). technology. Even after 10 min treatment the removal 
efficiency was around 50%. The treatments also exhibited similar 
results after 10 min of UV treatment, but there were significant 
differences in the performance after 30 min. After 30 min, the 
UVC oxidation process showed 70 % removal efficiency after 
coagulation, and 80% removal efficiency was reached after MBBR 
purification [23]. The UV/H2O2 process proved to be useful after 
the coagulation process. The MBBR process was the most effective 
in micropollutant removal. In case of MBBR after 5 min treatment 
85-98 % of the micropollutants were removed, while after 10 
min treatment 100% removal efficiency was achieved. It was 
concluded that the current methods used in wastewater treatment 
significantly affect the maximum removal efficiency achieved 
with post-treatment technologies. In the fourth stage of sewage 

treatment, not only the oxidation processes take place. Adsorption 
processes are also important to be considered. The oxidation 
processes combined with adsorption technique have reached 
outstanding results in the removal of micropollutants. Salvatore et 
al. studied the removal efficiency of the adsorption combined with 
high efficiency oxidation process to remove nitrophenol from waste 
water and a removal efficiency of 70 % was achieved [35].

Oxidation Processes
Ozonic oxidation processes are widely used in sewage 

treatment [36]. Ozone is not stable in an aqueous environment. 
There are several different solutions to mix the gas-water phases 
in order that the ozone can oxidize the micropollutants in the 
water. In the first step free radicals are formed when the ozone 
is decomposed and reacts with the organic compounds. Oxygen, 
odor-causing compounds, color-influencing compounds, volatile 
substances, humic substances, aromatic compounds [37] can 
easily be oxidized in this way. Advanced oxidation procedures 
(AOP) have also been extensively studied. According to Riberio et 
al. the chemical oxidation processes destruct the organic micro-
contaminants and majority of the complex compounds. During 
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these processes hydroxyl radicals are formed which oxidize the 
organic pollutants. The products of the oxidation are CO2, H2O 
and inorganic ions [24]. Ozonization can be used in post-cleaning 
processes. The reason for this is that the chemical oxidation 
reduces the concentration of compounds which cannot be removed 
in the biological units or adsorptive methods. Ozone rapidly reacts 
with nitrite, so full nitrification takes place which is a prerequisite 
for the effective ozonation. Additional procedures attached to 

the conventional sewage treatment technologies to remove the 
organic micropollutants increase the energy needs. As a result, 
their environmental and economic impacts are significant. Table 2. 
summarizes the results of several studies on the energy demands 
of ozonization. The results of Danièle Mousel et al. show that the 
ozonic oxidation process used in sewage treatment plants has 
significantly higher energy demand than that of the adsorption 
methods [38] in order to remove micropollutants (Table 2).

Table 2: Literature data on the energy demand of ozonization [38].

Process Energy demand 
[KWhel/m3] Description Literature

Ozonation  
oxidation

0.03-0.12 Ozonization without post-treatment [Abegglen and Siegrist, 
2016]

0.12 Ozone dosage: 5.7 g/m3, ozone-sand filter (60 l/s) [Margot et al., 72]

0.1-0.2 Hospitals wastewaters with MBR pre-treatment technology and ozone 
process (5-10 g/m3) [Kovalova et al., 73]

0.035 High post-ozonization [Hollender et al., 74]

0.04-0.09 Laboratory ozone treatment for 90% removal of target components [Katsoyiannis et al., 75]

0.045-0.05 Large and pilot plant studies (0.015 kWh/m3) [Bui et al., 76]

Hydrogen Peroxide Treatment
In several cases H2O2 can be used to improve the formation of 

OH radicals [39]. The method is widely spread in the removal of 
organic pollutants. Rosenfeld et al. also reported that this process 
is suitable for the removal of pharmaceutical residues [40]. There 
is a tendency to supplement the hydrogen peroxide processes 
with UV treatment and other processes. Their effectiveness shows 
outstandingly good mineralization efficiency, which can be achieved 
in sevaral cases [41].

UV/H2O2 Combined Processes
Ultraviolet irradiation cleaves the oxygen-oxygen bonds 

at a suitable wavelength through a photochemical pathway, 
thus generating OH radicals from H2O2 (Eq. 1) [42]. During the 
wastewater treatment process, photon and OH radicals oxidize the 
micro-pollutants [43].

                              2 2 2H O hv OH+ →                                      (1)

By absorbing a photon (eq.1), the quantum effect of OH 
inducement is 0.5 at 254 nm wavelength Figure 2, [44,45]. 
The formation of OH radicals in the UV/H2O2 system is pH and 
temperature independent [46], however, in practice the efficiency 
is influenced by the pH of the water since the OH radicals react with 
the CO3

2- and HCO3
- ions (Eqs. 2 and 3) [33] and other inorganic 

impurities dissolved in water [47].

2 6 1 1
3 2 3 8 10OH HCO H O CO K M S− − − −+ → + = ×         (2)

 
2 9 1 1
3 3 3 10OH CO HO CO K M S− − − − −+ → + = ×           (3)

According to Eqs. 2 and 3. the presence of hydrocarbonate and 
carbonate ions negatively influences the formation of OH radical 
and the mineralization of the organic materials [48], (Figure 2).

The removal efficiency of 23 different drugs was studied by 
H2O2/UVC oxidation procedure and the results are summarized in 
(Table 3).

Figure 2 : Absorption spectrum of H2O2 and O3 in aqueous medium.
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Table 3: The removal efficiency of the UV/ H
2
O

2
 oxidation process for 23 micropolluting components at different H

2
O

2
 concentrations [Afonso-Olivares 

et al. 41].

H2O2 dosage [mg/l]: 5 15 20 25

Component C/C0* degradation [%] C/C0 degradation [%] C/C0 degradation [%] C/C0 degradation [%]

Atenolol 0.66 34 0.11 89 0.09 91 0 >99
Bezafibrate 0.19 81 0.01 99 0.02 98 0 >99

Caffeine 0.74 26 0.12 88 0.15 81 0.13 87

Carbamazepine 0.48 52 0.02 98 0.07 93 0 >99
Ciprofloxacin 0 >99 0 >99 0 >99 0 >99
Clofibric acid 0 >99 0 >99 0 >99 0 >99

Diclofenac 0 >99 0 >99 0 >99 0 >99
Erythromycin 0.66 34 0.3 70 0.24 76 0 >99

Fluoxetine 0.02 98 0.08 92 0.02 98 0 >99
Gemfibrozil 0 >99 0 >99 0 >99 0 >99
Ibuprofen 0.33 67 0 >99 0 >99 0 >99

Ketoprofen 0.03 97 0.06 94 0.08 92 0.05 95
Metamizol 0 >99 0 >99 0 >99 0 >99

Metronidazole 0.3 70 0.21 79 0.08 92 0 >99
Naproxen 0 >99 0 >99 0 >99 0 >99
Nicotine 0 >99 0 >99 0 >99 0 >99
Ofloxacin 0.3 70 0.26 74 0.24 76 0.21 79

Omeprazol 0.02 98 0 >99 0 >99 0 >99
Paraxanthine 1 0 0.14 86 0.11 89 0 >99
Propranolol 0.18 82 0 >99 0 >99 0 >99
Ranitidine 0 >99 0 >99 0 >99 0 >99

Sulfamethoxazole 0 >99 0 >99 0 >99 0 >99
Trimethoprim 0.65 35 0.14 86 0.17 83 0.04 96

*H2O2 dosage / Initial pollutant compound concentration ratio

Advanced Ulra-Violet Processes
Advanced UV-based oxidation processes have proven to be 

effective in removing organic micropollutants from waters. In 
case of heavily contaminated surface waters [47] and wastewaters 
outstanding results were obtained by this technology [49]. It is 

apparent from the work of Canonica et al. that the depletion of 
drug residues at neutral pH was for EE2 compounds was 0.4% for 
dicl8fenac, 26% for diclofenac and 15% for sulfamethoxazole.The 
elimination efficiency of 23 pharmaceuaticals are summarized in 
the following (Table 4), [41]:

*H2O2 dosage / Initial pollutant compound concentration ratio

Table 4: Elimination efficiency for 23 pharmaceuticals by advanced ultra-violet processes [Afonso-Olivares et al. 41].

Component C/C0 ratio* degradation efficiency [%] Component C/C0 ratio degradation efficiency [%]

Atenolol 0.7 29.57 Metamizole 0 >99.0
Bezafibrate 0.18 82.02 Metronidazole 0.31 68.94

Caffeine 0.89 10.99 Naproxen 1 0

Carbamazepine 0.81 18.9 Nicotine 0.05 94.73
Ciprofloxacin 0 >99.0 Ofloxacin 0.29 71

Clofibric acid 0 >99.0 Omeprazole 0.01 98.52
Diclofenac 0 >99.0 Paraxanthine 1 0

Erythromycin 0.67 32.87 Propranolol 0.2 >99.0
Fluoxetine 0.16 83.57 Ranitidine 0 >99.0

Gemfibrozil 1 0 Sulfamethoxazole 0 >99.0
Ibuprofen 0.36 63.59 Trimethoprim 0.81 18.8

Ketoprofen 0 >99.0 Mean 0.37 63.3

Fenton Process
High-efficiency oxidation Fenton processes are now widely 

used in wastewater treatment, organic pollutant removal and other 

aspects of water protection. These are commonly used in industrial 
scale to remove non-biodegradable highly-stable materials [50] or 
for disinfection procedures [51,52]. The Fenton-based procedure 
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is considered to be an efficient and commonly used process [53]. 
The first Fenton process was elaborated for the oxidation of maleic 
acid [54,32]. The Fenton process is the most effective at pH=3. The 
process consits of our steps: oxidation, neutralization, flocculation 
and sedimentation [55]. Basically, the removal of the organic 
materials takes place in two steps where the oxidation step and 
then coagulation occur at first [56]. During the oxidation of organic 
matter, OH radicals and coagulants are formed. This mechanism can 
be described according to the following equations (Eq. 4 to Eq 7):

          
2 3

2 2Fe H O Fe OH HO+ + − °+ → + +  (4)

                  2RH HO R H O° °+ → +   (5)

Where: RH is the organic pollutant.

                   
3 2R Fe R Fe° + + ++ → +                    (6)

              
2 3Fe HO Fe OH+ ° + −+ → +   (7)

Table 5 summarizes the advantages and disadvantages of the 
above-mentioned processes according to P.V. Nidheesh and R. 
Gandhimathi [32], (Table 5).

Table 5: Advantages and Disadvantages of Fenton Processes [Nidheesh and Gandhimathi, 32].

Advantage Disadvantage

There is no additional energy need for the process to activate 
H2O2 [Lücking et al., 77] The process consumes ferrous ions faster than it can regenerate [Zhang et al., 81]

The Fenton process is relatively inexpensive, easy to maintain and 
manage [Lu et al., 78]

Iron-containing sludges have been further treated by wastewater treatment plants 
with large amounts of chemicals and human resources [Ramirez et al., 82]

Brief reaction times include advanced oxidation processes [Got-
vajn and Zagorc-Koncan, 79]

The efficiency of the process is proven to be very effective in a narrow pH range 
(2-3) [Deng et al., 83]

The process is homogeneously catalytic, there is no material 
transfer restriction in the process [Li et al.,80]

Iron ions can deactivate the process via complex ions (phosphate ions, breakdown 
products) [Deng et al., 83].

You do not need any type of catalyst [Li et al., 80] It can generate new types of pollutants in the waters through its degradation pro-
ducts [Lücking et al., 77]

Catalytic Processes
In the course of water purification catalytic processes including 

heterogeneous, homogeneous catalytic as well as biocatalytic 
processes are also used. Homogeneous catalysis is an extremely 
selective process, usually transition metal complex or special 
organic compound is used with one or more reactants in one phase. 
Their disadvantage is the operational cost and the separation of 
the product [57]. The heterogeneous catalyst is immiscible with 
the reactants, and it forms a separate phase. The catalysts have 
high specific surface area and the reaction takes place in the pores. 
The advantage of this catalytic process that it easy to separate 
the catalysts from the product and catalysts are cheaper than 
the homogeneous catalysts. Their disadvantage is that in many 
cases the catalysts are not selective [58]. Biocatalysts are usually 
protein-type compounds with specific activity and catalyze only 
the predetermined reaction. Their advantage lies in their high 
selectivity. Their disadvantage is that they are extremely expensive 
and sensitive to temperature, pH, solvent, ionic strength, and 
product concentration [59].

A significant part of the papers dealing with AOP technologies 
focuses on heterogeneous photocatalysis. It is also apparent from 
the work of Ana R. Ribeiro et al. that 20% of coloring materials 
formed during the photocatalytic reaction [34]. Heterogeneous 
photocatalysis can be considered as a green technology for the 
removal of organic micropollutants. The most widely used catalyst 
is doubtless the TiO2. It shows high chemical and photochemical 
stability. The disadvantage of its use is the broadband energy 
demand (3.0-3.2 eV), which also covers the UV range in the 
electromagnetic spectrum [60]. Various combined processes 
have shown outstanding efficiencies in the removal of various 

micropollutants. Nuno et al. reported that photocatalytic procedures 
are the most effective in degradation and mineralization of organic 
micropollutants [61]. In Table 6, the results of several reaseach 
groups are summarized on photocatalytic treatments [61], (Table 
6).

Table 6: Photocatalytic removal efficiency for drugs [Nuno et al., 61].

Contaminating  
component

Photocatalytic removal efficiency (at 
25-minute reaction time)

Diclofenac 90%
Ibuprofen 75%

Sulfamethoxazole 80%

Propranolo 75%

Carbamazepine 100%

17-alpha-ethinylestradiol 90%
17-beta-estradiol 70%

Electrochemical Oxidation
The electrochemical oxidation processes have been used in 

pilot plants in the past and in wastewater treatment projects [62]. 
In many cases the processes are used to reduce the detrimental 
discharges into surface water to avoid the ecological damage in 
the recepients [63]. In the processes hydroxyl radicals are formed 
directly by electrochemical reactions (anodic oxidation, AO) or with 
Fenton reagent. In the first case, the OH radicals are generated by the 
discharge at the anode, while in the latter case the Fenton reaction 
generates the OH radicals. Based on the experimental results 
the in situ hydroxyl radicals are the second strongest oxidizing 
agents according to our present knowledge [64]. Throughout the 
processes, the OH radicals can be produced in an environmentally 
friendly way, with a standard reduction potential of E = 2.8 V, 
which can be used to mineralize the micropollutants [65] during 
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the non-selective oxidation. The processes are widely used to 
different sewage types. In many cases the processes have resulted 
in complete mineralization [66]. During the electrochemical 
oxidation, the OH radicals directly oxidize the pollutants due to the 
direct electron flow through the anode (Figure 3).

The anodic oxidation reaction is depicted in Figure 3. The 
reactions (a), (e), (f) show the active anodic reactions (a), (b), (c), 
(d). The reaction (a) results in the formation of hydroxyl radical 
M (OH); reaction (b) is the generation of metal oxide (MO), which 
results in reaction (c), the electrochemical transformation from 
the organic materials. Step (d) results in the formation of ozone 
(Michaud et al., 2003), and the formation of hydrogen peroxide 
can be observed. The electrochemical oxidation processes can also 
be efficiently used in the field of water purification. It was shown 
that after 7 hours of treatment, TOC removal of about 99% at 1000 
mA current (16.2 mg/l solution) was achieved. It was also found 
that few intermediate degradation products were generated and 
effective mineralization was achieved [62]. According to Sirés 

and Brillas, the anodic electrochemical oxidation methods can be 
efficiently used for the removal of drug derivatives (Table 7), [67].

Figure 3 : Anodic oxidation reaction mechanism [90].

Table 7: Effectiveness of anodic oxidation for medicines Ignasi and Enric [67].

Medicines Used anode Solution Amperage 
[mA]

Electrolysis 
time [min]

TOC remo-
val [%] Reference

17α-ethinylestradiol Ti/SnO2
100 ml (2,0 mg/l 0,2 M Na2SO4 

solution pH=6,2) 60 480 79 [Feng Y et al., 84]

17β-estradiol BDD 250 ml (0,5 mg/l 0,1 M Na2SO4 
solution pH=6,0) 350 270 94 [Yoshihara and Muru-

gananthan, 85]

Clofibric acid Pt BDD 100 ml (179 mg/l 0,05 M Na2SO4 
solution pH=3,0) 300 420 36,98 [Sirés et al., 86]

Diclofenac Pt BDD
100 ml (175 mg/l 0,05 M Na2SO4 so-
lution, in Phosphate buffer solution 

pH=3,0)
300 360 46,97 [Brillas et al., 87]

Ibuprofen BDD 200 ml (1,75 mM 0,035 M Na2SO4) 30 mA/m2 360 75,92 [Ciríaco et al., 88]

Ketoprofen BDD 250 ml (5 µM 0,1 M Na2SO4 pH=6,0) 49,5 1020 100 [Magureanu et al., 89]

Paracetamol Pt BDD 100 ml (157 mg/l 0,05 M Na2SO4 
solution pH=6,0) 300 360 17,98 [Brillas et al., 87]

Sulfamethoxazole BDD 45 ml (1 mM 0,1 M NaClO4 solution) 20 300 78 [Boudreau et al., 90]

Ultrasonic Irradiation
Ultrasonic irradiation is considered a pollutant-free technology, 

and its use is widespread. It removes many micropollutants 
(ibuprofen, ethyl-paraben, paration, methyl-benzotrizole) [68]. The 
effectiveness of the treatment stems from the following: chemical 
effects, shock waves and shear stress [68]. Ultrasound spreads in 
the form of three-dimensional longitudinal waves. Wavefronts pass 
through the medium and cause pressure increase and decrease. 
Pressure fluctuation depends on the intensity of the sound 
waves. The pressure increase may be so high that it interrupts the 
continuity of the fluid medium by creating microscopic cavities. 
These rapidly generated cavities pulse through the liquid. As a 
result, 4000-6000 oC temperature and 300-500 bar pressure may 
occur locally in the treated wastewater. These extreme values result 
in the degradation of micropollutants [69].

Microwave Procedures
Microwave technology has gained ground in industrial use 

in addition to the well known household applications. During 

oxidation processes the oxidizing agents (potassium-persulfate) 
used under microwave irradiation will also be able to degrade some 
of the hardly degradable compounds (e.g.: perfluoro-octanoic acid, 
pesticides, azo-dyes). Yu-Chi and his colleagues demonstrated the 
defluorination and degradation efficiencies of compounds by the 
combination of microwave and oxidation treatment (Table 8) [70]

Table 8: Degradation efficiency of components by microwave treatment.

Component Defluorination [%] Degradation [%]

PFHpA 23,2 67,2

PFPeA 25,6 67,5

PFBA 37,8 70,9
PFHeA 44,8 74,5

PFPrA 57,5 76,4

TFP 65,2 77,9

  These micropollutants are efficiently broken down during 
the microwave process. High mineralization rate can be achieved 
in this way. It has been demonstrated that pH and temperature 
are important driving elements of this treatment [70]. Yu el al. 
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studied the Fenton reaction combined with microwave treatment 
of pharmaceuticals of wastewaters. The efficiency varied between 
40-60% depending on the Fenton dosage [71-94].

Discussion
Removal efficiencies of different pharmaceuticals from 

wastewaters are compared from the point of view of different 
technological processes used based on literature data. The 
combined ultraviolet and hydrogen-peroxide process, the 
ultraviolet process, the photocatalytic process, and the anodic 
oxidation process are evaluated for micropollutant removal. The 
removal of drugs (Paracetamol, 17-Beta-Estradiol, 17-Alpha-
Ethinyl-estradiol, Trimethoprim, Sulfamethoxazole, Ranitidine, 
Propanolol, Paraxanthine, Omeprazol, Ofloxacin, Nicotine, 
Naproxen, Metronidazole, Metamizol, Ketoprofen, Ibuprofen, 
Gemfibrozil, Fluoxetine, Erythromycin, Diclofenac, Clofibrc acid, 
Ciprofloxacin, Carbamazepine, Caffeine, Bezafibrate, Atenolol) 
were studied by the above mentioned micropollutant removal 
technologies. The removal efficiencies for Ketoprofen, Ibuprofen, 
Erythromycin and Diclofenac from waters by different treatment 
technologies are illustrated in Figure 4 and 5. based on literature 
data since these drugs are widely used in our daily life. It can be 
concluded that the UV/H2O2 process and the photocatalytic process 
can be efficiently used for the removal of micropollutants from 
waters. For the selection of a fourth stage waste water treatment 
not only the micropollutant removal efficienies, but the financial 
aspects including the investment and operational costs must be 
considered as well (Figure 4 and 5).

Figure 4 : Removal efficiencies for Ketoprofen and Ibuprofen by 
different treatment technologies based on literature data.

Figure 5 : Removal efficiencies for Erythromycin and Diclofenac 
by different treatment technologies based on literature data.

Conclusion
From the point of view of the sustainable development it is an 

urgent task to deal with the fourth stage of wastewater treatment 
since the conventional wastewater treatment facilities cannot 
cope with the efficient removal of the micropollutants from 
wastewaters. Therefore it is a challange for the scientists to deal 
with new solutions to remove drug, pharmaceutical, pesticide 
residues from waters since the long-term human health impacts of 
these compounds cannot be clearly and fully understood. However, 
the preliminary studies on the health implications are alarming 
therefore it is a must to deal with these issues.
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